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Abstract
Large-scale, case-control genome-wide association studies (GWASs) have revealed genetic variations associated with diverse
neurological and psychiatric disorders. Recent advances in neuroimaging and genomic databases of large healthy and diseased
cohorts have empowered studies to characterize effects of the discovered genetic factors on brain structure and function,
implicating neural pathways and genetic mechanisms in the underlying biology. However, the unprecedented scale and com-
plexity of the imaging and genomic data requires new advanced biomedical data science tools to manage, process and analyze the
data. In this work, we introduce Neuroimaging PheWAS (phenome-wide association study): a web-based system for searching
over a wide variety of brain-wide imaging phenotypes to discover true system-level gene-brain relationships using a unified
genotype-to-phenotype strategy. This design features a user-friendly graphical user interface (GUI) for anonymous data
uploading, study definition and management, and interactive result visualizations as well as a cloud-based computational
infrastructure and multiple state-of-art methods for statistical association analysis and multiple comparison correction. We
demonstrated the potential of Neuroimaging PheWAS with a case study analyzing the influences of the apolipoprotein E
(APOE) gene on various brain morphological properties across the brain in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort. Benchmark tests were performed to evaluate the system’s performance using data from UK Biobank. The
Neuroimaging PheWAS system is freely available. It simplifies the execution of PheWAS on neuroimaging data and provides
an opportunity for imaging genetics studies to elucidate routes at play for specific genetic variants on diseases in the context of
detailed imaging phenotypic data.
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Introduction

In the past decade, numerous genome-wide association stud-
ies (GWASs) that associate specific traits with genetic variants
across the genome have been performed using disease-
specific definitions to identify novel genetic influences on

many diseases (Hindorff et al. 2009; Horwitz et al. 2019;
Visscher et al. 2017). The findings improve the understanding
of risks for the diseases, and may guide diagnosis and therapy
on a patient-specific basis (Van Cauwenberghe et al. 2016).
However, the path from GWAS to biology is not straightfor-
ward because an association between a genetic variant at a
genomic locus and a trait is not directly informative with re-
spect to the target gene or the mechanism whereby the variant
is associated with phenotypic differences (Visscher et al.
2017). The effects of neurological and psychiatric disorders
such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
schizophrenia, bipolar disorder and autism on brain structure
and function can be seen in neuroimaging data in vivo (Toga
2015). Neuroimaging can therefore provide intermediate
endophenotypes, and joint analysis of the genetic and neuro-
imaging datasets provides a chance for uncovering the genetic
architecture of such disorders. Thus, it is of interest to assess
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effects on the brain of candidate genes that have been previ-
ously identified in GWASs as exploratory follow-ups of the
initial discoveries. For example, when a strong genome-wide
supported variant or mutation has been found to be highly
significant in a neurological disease on the basis of GWAS,
then mapping the genetic marker on the brain is a high priority
(Medland et al. 2014).

The recent emergence of neuroimaging and genomic data-
bases of large healthy and diseased cohorts (Bycroft et al.
2018; Jack Jr. et al. 2008; Jernigan et al. 2016; Satterthwaite
et al. 2014; Thompson et al. 2010) enables scientific discovery
through conducting broad surveys that examine true system-
level gene-brain relationships. Previous candidate-gene or
whole-genome imaging studies, in general, examined only a
limited number of imaging variables of specific brain regions
(Glahn et al. 2007). Recent so-called “whole-brain” studies
attempted to conduct a broader survey across the brain, but
still focused on a single type of imaging measurement at a
time, e.g. regional/local cortical volume (Medland et al.
2014; Shen et al. 2010). Cortical volume geometrically is a
combination of cortical thickness and surface area. It has been
demonstrated that cortical thickness and surface area are bio-
logically independent, as they are driven by distinct cellular
mechanisms (Pontious et al. 2008; Rakic 1988), and are dif-
ferentially affected by genetic factors (Panizzon et al. 2009;
Winkler et al. 2010). Thus, different neuroimaging pheno-
types may play different roles in imaging genetics (Winkler
et al. 2010). The narrow focus of the previous analyses ne-
glects the potential power to detect more distributed gene-
brain associations obtained using other imaging phenotypes,
and variations in methods and studied samples may also in-
duce false negatives or positives in individual studies.
Moreover, previous GWASs have shown that significantly
associated genetic markers (single nucleotide polymorphisms
(SNPs)) commonly have small effect sizes of the phenotypic
variance, thus large sample sizes are needed to increase the
statistical power (Medland et al. 2014). Here, we propose a
neuroimaging-based phenome-wide association study
(PheWAS) approach, which, as an inverse to GWAS, system-
atically associates genes of interest with a wide variety of
neuroimaging phenotypes extracted from large cohorts using
a unified genotype-to-phenotype strategy (Fig. 1). Compared
with existing single-phenotype methods, this approach pro-
vides a broad survey of possible gene-brain relationships on
whole populations.

The concept of PheWAS was originally developed for
analyses on structured phenotypic data, such as International
Classification of Disease (ICD) codes, epidemiologic data,
quantitative traits, and clinical conditions (Bush et al. 2016;
Denny et al. 2013; Denny et al. 2010; Liao et al. 2014; Neuraz
et al. 2013; Pendergrass et al. 2013; Pendergrass et al. 2011).
Implementing PheWAS on neuroimaging data is complicated
and challenging. The first primary challenge is the

complexity, heterogeneity, and volume of the data involved
(Dinov et al. 2016). Especially, neuroimaging genomic data
archives are frequently comprised of complex elements that
are in heterogeneous file structures and formats, and are, in
general, poorly structured. The large data volume (thousands
of subjects and tens of thousands of files) and complexity
requires intensive computation that is difficult to accomplish
using conventional methods (Toga et al. 2015). Advanced
computing and storage infrastructure are needed.
Sophisticated brain image processing is required for image
registration, brain segmentation and parcellation, and
extracting various brain structural and/or functional measures
as phenotypes. Additionally, the association analysis ap-
proaches that are commonly used in case-control GWASs
and conventional PheWASs cannot address the spatial corre-
lation across the brain. Statistical brain morphometry analysis
that can adapt to the spatial smoothness of the neuroimaging
data is needed. Finally, the Manhattan plots commonly used
for result visualization in previous GWASs/PheWASs
(Carroll et al. 2014; Pendergrass et al. 2012) are not suitable
for interpreting the neuroimaging data of hundreds of thou-
sands brain voxels/vertices. Brain mapping visualization tech-
niques are required to clearly display the statistics and ana-
tomical locations of detected patterns.

In this work, we developed a free web-based system -
Neuroimaging PheWAS (version 1.0), which addresses the
challenges that researchers may face when dealing with
large-scale, brain-wide imaging association studies. A sum-
mary of the main contributions of Neuroimaging PheWAS
is highlighted in Fig. 2. The platform is unique in four ways:
(1) it provides an easy-to-use graphical user interface (GUI)
for data management and study protocol definition; (2) a
cloud-based computational infrastructure enables high-
performance brain magnetic resonance imaging (MRI) pro-
cessing and large-scale PheWAS analyses; (3) it provides a
variety of methods for statistical association analysis and mul-
tiple comparison correction; (4) it includes a web-based view-
er for interactive result visualization and manipulation.

As a case study, we applied Neuroimaging PheWAS on a
neuroimaging genomic data set from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database.1 We analyzed the
influences of apolipoprotein E (APOE) genotype, the most
established genetic risk factor for AD (Yamazaki et al.
2019), on various surface−/parcellation-based brain morpho-
logical properties across the brain. We also performed a series
of benchmark tests to evaluate the performance of
Neuroimaging PheWAS, using data extracted from the UK
Biobank database.2 Neuroimaging PheWAS is available on-
line at http://phewas.loni.usc.edu/phewas.

1 http://adni.loni.usc.edu
2 https://www.ukbiobank.ac.uk
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Materials and Methods

The Neuroimaging PheWAS system (version 1.0) is designed
to provide researchers a web-based solution to implement sys-
tematic, large-scale association studies on complex
parcellation statistics of region-wise neuroanatomical proper-
ties, vertex-wise surface-based brain morphometric metrics,
and/or other generic phenotypic statistics. The system is com-
prised of four stages (Fig. 3): 1) initialization, including online
account creation and uploading data; 2) defining study proto-
cols and computation of association statistics; 3) real-time,
online result visualization and manipulation; 4) downloading
results for post hoc analysis and/or publication. The system
integrates facilities from multiple platforms to achieve these
functionalities (Fig. 3) and requires no specialized hardware or
software for end users. It features a user-friendly web GUI
designed for different levels of expertise. A User Guide,3 in-
cluding synthetic, anonymized demo data sets, is accessible
on the GUI for the user to learn how to prepare research data
files and to use the tool. The web GUI was created using the
web scripting languages – PHP4 and JavaScript,5 along with
styling using the front-end framework – Bootstrap.6 The mod-
ules for various sections on the web tool are implemented such
that they communicate with the database management system
MySQL7 for maintaining records for users, projects and job
submissions. The webserver of Neuroimaging PheWAS is set
up on a single Intel Xeon CPU (2.3 GHz) with 16 GB of
memory, running Debian GNU/Linux 8. It is connected to a
high-performance computing (HPC) server8 at the Laboratory
of Neuro Imaging (LONI), USC Mark and Mary Stevens
Neuroimaging and Informatics Institute, University of

Southern California (USC). The LONI HPC server ensures a
stable, secure and robust environment with 4096 CPU cores,
38 terabytes of aggregate memory space and 5.3 petabytes of
primary storage cluster capacity (see Supplementary Methods
for details). It provides Neuroimaging PheWAS the cloud
computing (Mauch et al. 2013) resource for storing data and
results and for deploying the computational component of the
system. The LONI pipeline9 (Dinov et al. 2010; Dinov et al.
2009) is used for designing, submitting, executing, and mon-
itoring data analysis workflows on the LONI HPC server. In
the following sections, the workflow and technical specifica-
tions of the Neuroimaging PheWAS system are described.
More details that explain how the GUI interacts with the
workflow and system’s functionalities are illustrated in Fig. 4.

Initialization

The user first signs up for the system on the Neuroimaging
PheWAS website by creating an account with a preferred
username and password (Fig. 4a). Once logged in, the user
is redirected to the web GUI and is able to upload their
research data (Fig. 4d), including tabulated matrices of
genotypes, covariates, imaging phenotypes and/or other
generic phenotypic statistics. The files are transferred into
the user’s online data bag on the LONI HPC server auto-
matically and securely (Chard et al. 2016; Czajkowski
et al. 2017; Schuler et al. 2016). Neuroimaging PheWAS
allows uploading data sets of MR images (NIFTI format)
and performing MRI processing using the FreeSurfer soft-
ware10 on the LONI HPC grid (Fig. 4c). The distributed
computing system parallelizes the FreeSurfer tasks of
multiple brain images by assigning the task for each image
to a separate dedicated CPU core. After all the FreeSurfer
tasks of an imaging data set are completed, the system

3 http://phewas.loni.usc.edu/phewas/user_guide.php
4 https://www.php.net
5 https://javascript.info
6 https://getbootstrap.com
7 https://www.mysql.com
8 cranium.loni.usc.edu 10 http://surfer.nmr.mgh.harvard.edu

Fig. 1 Comparison between
GWAS and PheWAS

9 http://pipeline.loni.usc.edu
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automatically extracts all parcellation−/surface-based brain
morphological measures from the complex FreeSurfer out-
puts of each image (see Supplementary Methods for de-
tails). These statistics are then saved into CSV formatted
files for parcellation-based measures and compressed bina-
ry files for surface-based measures. These new data files
are stored in the user’s data bag along with the other
uploaded data files and can be viewed in the Data

Manager section of the GUI (Fig. 4d). For the user who
performed their own FreeSurfer processing, we provide
Java-based and shell scripts (can be downloaded from the
User Guide3 on the GUI) for them to locally extract, inte-
grate and save the imaging measures into tabular data files
from the complex FreeSurfer outputs. Of note, a number of
studies have consistently demonstrated that variation in
FreeSurfer version can have a strong effect on brain

Fig. 2 Summary of the Neuroimaging PheWAS system. Its key features
include 1) a user-friendly GUI for anonymous data uploading, study
definition and management, 2) a cloud-based computational and storage

infrastructure, 3) multiple methods for statistical association analysis and
multiple comparison correction, 4) interactive result visualizations
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structural segmentations and estimates of cortical morphol-
ogy measures (Bigler et al. 2018; Chepkoech et al. 2016;
Gronenschild et al. 2012; Whelan et al. 2016). Therefore,
mixing imaging metrics obtained from different versions of
FreeSurfer is discouraged as results are expected to differ
(Gronenschild et al. 2012). Neuroimaging PheWAS pro-
vides different versions of FreeSurfer (from v4.3 to v6.0)
to enable the user to select the same version of FreeSurfer
that they had used to process new cases in an ongoing
study. For new studies, the current FreeSurfer v6.0 is rec-
ommended due to its more reliable outputs than the older
versions (Whelan et al. 2016).

PheWAS Projects

The user can create and edit projects at the Project Editor
section of the GUI (Fig. 4e). A project refers to an association

study specified by a customized project name, the analysis
type, the study data files, and the statistical model. The anal-
ysis types supported by Neuroimaging PheWAS include
surface-based morphometry (SBM) for vertex-wise cortical
morphological data and region-of-interest (ROI) based asso-
ciation analysis (univariate or multivariate) for brain
parcellation statistics (see section Statistical Analysis and
Supplementary Methods for details). When an analysis type
is selected, the system identifies the research data files that
correspond to the analysis type (e.g. surface data for SBM,
parcellation data for ROI-based analysis) from the user’s on-
line data bag and lists them in the data fields on the Project
Editor panel for the user to select. The system allows selecting
one or multiple phenotypic data files for a project. For in-
stance, in a project, the user can test genetic effects on cortical
thickness only or on multiple brain morphological measures
(thickness, area, volume and etc.) systematically. The Project

Fig. 3 The infrastructural relations between the integrated platforms and
workflows in the Neuroimaging PheWAS system. The user interacts with
the GUI hosted at the webserver to manage and manipulate data, studies
and results. The webserver is connected to the LONI HPC server where

data and results are stored and computational analyses are deployed. The
LONI pipeline submits, executes, and monitors analysis workflows on
the LONI HPC grid
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Editor panel also allows the user to select the files for the
target genotype and covariates. The system recognizes the

variables contained in the selected table of covariates by the
column names and lists them in an interactive menu. Using the

Fig. 4 The web-based GUI for the Neuroimaging PheWAS system. a
Entering to http://phewas.loni.usc.edu/phewas using any web-browser,
the user can register and log in to the Neuroimaging PheWAS system.
b Once logged in, the user can access different panels with the panel
navigator. c In the MRI Processing panel, the user can browse, select
and upload MRI files as a collection and submit jobs for MRI
processing. d In the Data Manager panel, the user can browse, select
and upload tabulated files of research data. The dashboard lists the
uploaded data files and allows downloading or deleting selected files. e
In the Project Editor panel, the user can choose analysis methods and

study data sets, define the statistical model, and submit analysis jobs. f
The Project Monitor panel displays information and status of projects and
allows multiple actions to monitor and manage the projects. The user can
activate the Job Status panel (f-1) to check the information of jobs under a
project, and to terminate/delete jobs. g Result Viewer visualizes result
statistics as figures and tables, which are downloadable both as individual
files and archives. The user also can activate the interactive 3D result
rendering on a standard brain surface model (g-1) and the interactive
Manhattan and Q-Q plots (g-2) for real-time result manipulation
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interactive menu, the user can select and add covariate(s),
polynomial (quadratic or cubic) and/or interaction terms into
the statistical model.When a project is defined, Neuroimaging
PheWAS converts the configuration of the project into shell-
based workflows for each of the selected phenotypic data files,
and then submits these workflows to execute as parallel jobs
on the grid computing system through the LONI Pipeline. A
job refers to the computational instance of an analysis defined
in the project.

In each job, prior to performing the analysis, Neuroimaging
PheWAS harmonizes the matrices of phenotypes, genotype
and covariates by matching the samples included in these
matrices based on the ‘subject IDs’. These matrices are further
cleansed controlling for missing values. Individuals that are
mismatched across these matrices and/or have missing values
are discarded from the analysis. The number of samples de-
leted in the data harmonization and cleansing is reported in the
output log file. Furthermore, the table of ROI-based pheno-
types may contain duplicated variables (the elements of two or
more variables are identical to each other), which could be
produced when combining multiple tables of FreeSurfer
parcellation statistics. The system identifies these duplicates
and drops them keeping only the first occurrence. The variable
names of the identified duplicates are reported in the output
log file as well.

Statistical Analysis

Neuroimaging PheWAS employs state-of-the-art algorithms
to implement multitudinous association analyses. SBM
(Dahnke and Gaser 2018) implements the statistical approach
of parametric mapping to examine influences of a genetic
variant on diverse brain morphological properties measured
from geometric models of the cortical surface at each vertex,
such as cortical thickness (Fischl and Dale 2000), surface area
(Winkler et al. 2012), volume (Zhao et al. 2013), and surface
curvature (Fischl et al. 1999). For region-wise parcellation
statistics, Neuroimaging PheWAS supports performing either
univariate analysis for individual genotype-to-phenotype rela-
tionships or multivariate analysis for a joint effect of multiple
phenotypes. Neuroimaging PheWAS provides a variety of
statistical tests, including linear regression, t-test, F-test and
analysis of variance (ANOVA), to handle different variable
types (continuous, categorical, interaction) in SBM and the
univariate ROI-based analysis. The multivariate ROI-based
analysis is implemented using the MultiPhen11 method
(O'Reilly et al. 2012), which regresses a genotype on a collec-
tion of phenotypes of any measurement nature (e.g. continu-
ous, categorical, ordinal) and then calculates a p value for the
combination of phenotypes. To prevent overfitting in the mul-
tivariate analysis, Neuroimaging PheWAS uses the least

absolute shrinkage and selection operator (LASSO)
(Tibshirani 1996) to preselect the phenotypes that have the
best joint power to predict the genotype as the inputs for the
MultiPhen test. Furthermore, Neuroimaging PheWAS inte-
grates diverse methods to correct for multiple comparisons.
Statistical results of SBM at all vertices are adjusted for the
family-wise error rate (FWER) using the random field theory
(RFT) method (Worsley et al. 1992; Worsley et al. 1996) that
adapts to spatial smoothness of the neuroimaging data. False
discovery rate (FDR) or a customized critical threshold (e.g.
GWAS significance level of p < 5e-8 or Bonferroni correction
level), which are also available for SBM, can be applied to
identify univariate genetic effects at different significance
levels. More details about the statistical analyses are given in
the Supplementary Methods.

Project Monitor

The Project Monitor section (Fig. 4f) of the GUI is a dash-
board presenting the information related to each project the
user created, including a unique project ID, creation time,
name and status. In this panel, the user can choose to take
multiple actions to monitor and manage their projects. First,
the user can activate the Job Status panel (Fig. 4f-1) to check
the information of jobs under a project, including the job IDs,
starting and ending time, and execution status (submitted,
backlogged, queued, running, completed or completed with
errors). The real-time statuses of projects and jobs are auto-
matically updated by communicating with the LONI pipeline
in the background, and the status information shown on the
GUI is updated with each page load through anAJAX12 call to
a PHP script. Second, the Project Monitor also provides nav-
igation to the Project Editor for the user to create a new project
or edit an existing project. Third, the user can choose to ter-
minate or delete a project/job, or to download an archive of
results if the project/job is completed successfully.

Result Viewer

When an association analysis is completed, the results are
returned to the webserver from the LONI HPC server and
visualized on the web-based Result Viewer (Fig. 4g). For an
analysis in a selected project, the figures produced by
Neuroimaging PheWAS are repeatedly displayed in a
slideshow window. The figures include 3D brain maps in
pre-defined views of genetic effects, uncorrected p-values,
RFT and/or FDR corrected p-values for SBM analysis,
Manhattan and Quantile-quantile (Q-Q) plots for univariate
ROI-based analysis, and plots of LASSO paths and cross-
validation and the summary table for multivariate ROI-based
analysis. These displays can be easily enlarged with a mouse

11 https://rdrr.io/cran/MultiPhen 12 https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
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click on the window. These resultant figures, maps and matri-
ces are downloadable both as individual files, zipped job/
project-folders from the Result Viewer or from the Project
Manager.

Except for the system-produced figures and tables, a re-
markable feature of the Result Viewer is the web-based, inter-
active viewer, which enables the user to manipulate result
visualizations in real-time so as to help understanding and
interpreting the complex, high-dimensional results. For SBM
analyses, the system employs the JavaScript library –
BrainBrowser13 v2.5.5 to visualize 3D surface data, which
works in any modern web browser without requiring any
browser plugins (Sherif et al. 2014). In an activated
BrainBrowser viewer (Fig. 4g-1), the user can select any of
the result vectors and render it on a 3D standard brain surface
model with an adjustable colormap. The user can also adjust
the color limits to threshold the map, freely rotate, pan and
zoom the rendering surface, and take screenshots. Another
key function of this viewer is that it allows the user to select
any single point on the surface model and show its coordi-
nates, vertex number, statistic and anatomical location (if an
annotation file is provided). For univariate ROI-based analy-
sis, the R library – manhattanly14 v0.2.0 is used to produce
interactive Manhattan and Q-Q plots for the resultant statis-
tics. In these interactive plots (Fig. 4g-2), the user can inspect
the value of a specific data point (e.g. phenotype name and p
value), zoom and pan the plot, extract a specific region as well
as export the manipulated plot.

System Management and Data Security

Neuroimaging PheWAS, together with other LONI web ser-
vices, is monitored by a central monitoring service,15 which
notifies administrators if the system goes offline or crashes.
Neuroimaging PheWAS and other LONI websites are also
tested on individual servers that are load balanced using the
monitoring software tool – Zabbix.16 The activities on the
Neuroimaging PheWAS webserver are recorded into a server
log, which provides administrators the reference to track and
manage errors/bugs.

The cloud computing resource is managed by the LONI
HPC grid engine and the LONI Pipeline in the background.
The LONI grid engine has a first come, first served system in
terms of resource allocation, with user limits in place on a
variety of levels. By default, Neuroimaging PheWAS is
allowed to execute, at the maximum, 768 jobs from all users
at a time. On top of the grid engine, the LONI Pipeline allows
more than 768 jobs to be submitted through the Neuroimaging

PheWAS system; the jobs exceeding the limit will be queued
by the grid engine. Especially, to provides a fair share resource
to users, Neuroimaging PheWAS sets another limit for the
number of concurrent jobs that each user can execute (current
limit is 48). Jobs submitted after the user’s limit is reached will
be backlogged and will be queued until any of the user’s
running jobs completes. These limits will be increased with
the increase in the demand and usage of Neuroimaging
PheWAS in the future. In particular, the user who needs a
larger number of CPU cores (e.g. 500) to implement
FreeSurfer processing for a big MRI data set (e.g. more than
1000 scans) may contact the system administrators17 to re-
quest this resource. Moreover, considering the runtimes need-
ed for common analyses (see the results of benchmark testing
bellow), any job running for over 24 h will be considered to be
stuck or failed and will be terminated. To avoid an overload of
the storage space, files of uploaded data and results that are
stored for more than 30 days will be deleted.

A set of security measures is implemented to prevent data
breaches. The user with a Neuroimaging PheWAS account is
limited to the functionalities of the tool only and cannot access
the LONI computational and storage infrastructure in the
backend. Each user can only access (download or delete) the
data that they have themselves uploaded and the results of
their own projects through the web GUI and is not able to
access other users’ data and results. All user communications
on the web GUI are secured using the HTTPS protocol. SSH
login to the webserver, the computing environment and the
data storage at LONI is restricted to system administrators
only. Direct root login via SSH is only allowed from the
LONI intranet that is secured by two Cisco Adaptive
Security Appliances and is not allowed from the public
Internet.

Case Study on APOE-Brain Associations

To demonstrate the usability of Neuroimaging PheWAS,
we analyzed associations of APOE, the most established
genetic risk factor for AD (Yamazaki et al. 2019), with
various brain morphological properties across the brain.
We queried the ADNI database and identified 1242 sub-
jects with both MRI and genomic data from the ADNI
study phases ADNI 1, ADNI GO and ADNI 2 (sample
characteristics are summarized in Supplementary
Table S1). The MRI acquisition and APOE genotyping
protocols can be found on the ADNI website1 and have
been previously described elsewhere, e.g. (Roussotte et al.
2014; Wyman et al. 2013). Baseline MRI scans of the
1242 ADNI subjects, CSV tables of corresponding
APOE ε4 dosage and metadata were uploaded to the
Neuroimaging PheWAS system as research data. The

13 https://github.com/aces/brainbrowser
14 https://cran.r-project.org/web/packages/manhattanly/index.html
15 https://www.site24x7.com
16 https://www.zabbix.com/ 17 http://phewas.loni.usc.edu/phewas/contact.php
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MRI scans were processed using FreeSurfer v6.0, and
then APOE-brain associations were assessed on the sur-
face−/parcellation-based brain morphological measures
using SBM, univariate and multivariate ROI-based analy-
sis controlling for age, sex, education, scanner and intra-
cranial volume (ICV) as confounding factors.

Benchmark Testing

We conducted a series of benchmark tests to evaluate the
performance of Neuroimaging PheWAS using a data set

extracted from the UK Biobank database2 under the approved
project 25,641. Details of this data set are available in (Zhao
et al. 2019). Runtimes to implement univariate and multivar-
iate ROI-Based analyses in the Neuroimaging PheWAS sys-
tem were assessed using varying numbers of samples (from
100 to 8000) and phenotypes (from 100 to 3000). For SBM,
the experiments were performed with varying number of sam-
ples (from 100 to 8000) only, due to the constraint of the
surface model (327,684 vertices). Moreover, to evaluate the
system’s functions of data harmonization and cleansing, we
artificially created data mismatching and missingness in

Fig. 5 Maps of APOE-brain associations that survived in RFT correction created by Neuroimaging PheWAS. Areas in blue-cyan represent cluster-level
patterns, areas in red-yellow represent peak-level patterns
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harmonized, complete testing matrices by shuffling the sam-
ples, unbalancing the sample sizes, and creating missing
values and duplicated variables. Experiments using such ma-
nipulated testing matrices as inputs were executed, and the
processed matrices were examined to determine if the system
is able to detect and control the known data flaws correctly. In
addition, all the analyses in the case study on APOE-brain
associations were repeated on different computational nodes
of the LONI HPC Grid to examine the consistency of the
outputs.

Results

MRI Processing

For the case study associating APOE genotype with the brain
using the ADNI data set, 1235 FreeSurfer processing jobs
were completed successfully and 7 jobs failed (runtime for a
single job = 9.34 ± 6.53 h). Neuroimaging PheWAS automat-
ically discarded the failed jobs and extracted vertex-wise mea-
sures of pial surface area, white matter (WM) surface area,
mean curvature, Gaussian curvature, surface Jacobian, sulcal
depth, cortical thickness, volume, gray matter (GM)/WM con-
trast from the output folders of the 1235 successful jobs, and

integrated these metrics across the subjects and saved them
into 9 compressed binary files for each morphological prop-
erty. The system also extracted ROI-based statistics of surface
area, volume, thickness, standard deviation of thickness, mean
curvature, Gaussian curvature, folding index, curvature index
and GM/WM contrast from the 7 different parcellation atlases
used in FreeSurfer (aseg, wmparc, aparc, aparc.a2009s,
aparc.DKTatlas, BA_exvivo and BA_exvivo.thresh) and then
integrated these across the subjects and saved them into 100
CSV files for separate hemispheres, different measures and
atlases (see Supplementary Methods for details). These files
were imported into the online data bag.

SBM Analysis

For the SBM analysis, we chose the APOE ε4 dosage as the
target genotype, the 9 vertex-wise brain morphometric mea-
sures as the phenotypes, and selected age, sex, education,
scanner, and ICV as covariates. Linear regression was chosen
to test the genetic effects of APOE. RFT and FDR were used
to control for the multiple comparisons across the brain
(327,684 vertices). Maps of APOE-brain associations that sur-
vived in RFT correction are shown in Fig. 5. Cluster-level
associations (cluster-level RFT corrected p < 0.05) were con-
sistently found in the middle, inferior and medial temporal

Fig. 6 Screenshot of the interactive viewer showing the T map of APOE
effects on vertex-wise cortical thickness. The rendered surface can be
freely rotated, paned and zoomed with mouse operations. The right panel

lists available result vectors, and allows changing colormap, color limits
and display views. Any single point on the surface model can be selected,
and the information of the point is shown on the left panel
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cortices for diverse morphological measures except for sulcal
depth. Additional cluster-level associations were detected in
the left inferior motor cortex (IMC) for the surface Jacobian
metric, in the left anterior cingulate cortex (ACC) and the right
insula for sulcal depth, in the inferior parietal cortex (IPC) and
the precuneus/posterior cingulate cortex (PCC) for thickness,
volume and GM/WM contrast, and in the prefrontal cortex
(PFC) for thickness and GM/WM contrast. In these patterns,
the dosage of APOE ε4 was positively correlated with surface
Jacobian and sulcal depth, whereas it was negatively correlat-
ed with the other measures (see the T maps shown in
Supplementary Fig. S1). Peak-level RFT inference identified
more localized APOE effects (peak-level RFT corrected p <
0.05) in the inferior and/or middle temporal cortex on pial and
WM surface area, surface Jacobian, thickness, volume, GM/
WM contrast and Gaussian curvature, in the medial temporal
cortex (mTC), IPC, precuneus/PCC on thickness, volume and
GM/WM contrast, and in the lateral dorsal prefrontal cortex
(LDPFC) on thickness. FDR inference detected nearly all the
cluster-level APOE effects with enlarged spatial extents, ex-
cept for the APOE effect on mean curvature in the bilateral
entorhinal cortices (EC) (Supplementary Fig. S2). Besides the
system-produced 3D brain maps in pre-defined views as
shown in Fig. 5 and Supplementary Fig. S1-S3, SBM results
were visualized using the web-based, interactive viewer for
manipulating and exploring the complex, high-dimensional
results in real-time (see Fig. 6).

Univariate ROI-Based Analysis

For the univariate ROI-based analysis, the 100 CSV files of
ROI-based statistics were integrated into a single matrix con-
taining 3228 imaging-derived phenotypes (duplicated vari-
ables were automatically detected and discarded by the sys-
tem). Effects of the APOE ε4 dosage on these phenotypes
were assessed using linear regression controlling for age,
sex, education, scanner and ICV as covariates. Significant
univariate effects were detected using the GWAS (p < 5e-8)
and Bonferroni (p < 0.05/3228 = 1.55e-5) significance levels.
The univariate analysis identified 49 phenotypes that were
significantly associated with APOE at the GWAS significance

Table 1 Table produced by Neuroimaging PheWAS summarizing
ROI-based phenotypes associated with APOE identified using univariate
analysis at the GWAS significance level of p < 5e-8. The phenotypes
were sorted by p values. Phenotypes were named as <region>_ <mea-
sure>_ < atlas>. lh: left hemisphere, rh: right hemisphere

Phenotype t value p value

Right-Hippocampus_volume_aseg −10.97 4.83E-27

Left-Hippocampus_volume_aseg −10.66 1.04E-25

Right-Amygdala_volume_aseg −8.98 5.34E-19

Left-Amygdala_volume_aseg −8.65 8.25E-18

lh_perirhinal_exvivo_volume_BA_exvivo.thresh −7.21 4.88E-13

rh_perirhinal_exvivo_volume_BA_exvivo.thresh −6.92 3.71E-12

lh_perirhinal_exvivo_volume_BA_exvivo −6.91 4.07E-12

lh_fusiform_volume_aparc.DKTatlas −6.46 7.48E-11

lh_perirhinal_exvivo_thickness_BA_exvivo −6.28 2.42E-10

lh_entorhinal_wg.pct −6.26 2.71E-10

rh_perirhinal_exvivo_volume_BA_exvivo −6.10 7.15E-10

lh_entorhinal_volume_aparc.DKTatlas −6.04 1.03E-09

rh_perirhinal_exvivo_thickness_BA_exvivo.thresh −6.02 1.17E-09

rh_entorhinal_wg.pct −5.99 1.40E-09

rh_G_pariet_inf-Angular_thickness_aparc.a2009s −5.95 1.72E-09

lh_inferiortemporal_gauscurv_aparc.DKTatlas 5.95 1.73E-09

lh_entorhinal_thickness_aparc.DKTatlas −5.93 1.95E-09

rh_inferiorparietal_thickness_aparc −5.91 2.26E-09

rh_inferiorparietal_thickness_aparc.DKTatlas −5.90 2.36E-09

lh_perirhinal_exvivo_thickness_BA_exvivo.thresh −5.89 2.52E-09

rh_middletemporal_volume_aparc.DKTatlas −5.89 2.55E-09

rh_perirhinal_exvivo_thickness_BA_exvivo −5.79 4.58E-09

SubCortGrayVol_volume_aseg −5.77 5.07E-09

rh_entorhinal_thickness_aparc.DKTatlas −5.75 5.68E-09

lh_entorhinal_thickness_aparc −5.74 5.92E-09

rh_G_oc-temp_med-Parahip_thickness_
aparc.a2009s

−5.74 6.12E-09

lh_G_oc-temp_lat-fusifor_volume_aparc.a2009s −5.73 6.25E-09

rh_middletemporal_volume_aparc −5.70 7.43E-09

lh_entorhinal_volume_aparc −5.69 8.03E-09

rh_middletemporal_thickness_aparc.DKTatlas −5.66 9.33E-09

rh_G_temporal_middle_thickness_aparc.a2009s −5.65 1.01E-08

lh_inferiortemporal_gauscurv_aparc 5.63 1.10E-08

rh_G_oc-temp_med-Parahip_volume_aparc.a2009s −5.59 1.42E-08

lh_S_front_sup_thickness_aparc.a2009s −5.57 1.59E-08

rh_entorhinal_volume_aparc.DKTatlas −5.57 1.59E-08

rh_parahippocampal_volume_aparc −5.57 1.60E-08

rh_S_interm_prim-Jensen_thickness_aparc.a2009s −5.55 1.74E-08

lh_inferiorparietal_volume_aparc −5.55 1.74E-08

rh_inferiorparietal_volume_aparc.DKTatlas −5.54 1.91E-08

lh_middletemporal_wg.pct −5.53 1.93E-08

rh_entorhinal_thickness_aparc −5.53 1.97E-08

lh_fusiform_volume_aparc −5.52 2.09E-08

rh_parahippocampal_volume_aparc.DKTatlas −5.49 2.41E-08

lh_inferiorparietal_volume_aparc.DKTatlas −5.48 2.58E-08

rh_entorhinal_volume_aparc −5.44 3.15E-08

Table 1 (continued)

Phenotype t value p value

lh_inferiorparietal_wg.pct −5.40 3.97E-08

rh_middletemporal_thickness_aparc −5.39 4.23E-08

lh_G_oc-temp_med-Parahip_thickness_
aparc.a2009s

−5.38 4.57E-08

lh_G_precuneus_thickness_aparc.a2009s −5.37 4.81E-08
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Fig. 7 Screenshot of the interactive Manhattan plot for ROI-based
univariate analysis of APOE-brain associations. The red line represents
the GWAS significance threshold of p = 5e-8, the blue line represents the

Bonferroni correction threshold of p = 1.55e-5. Annotations appear when
hovering the mouse over a point

Fig. 8 Coefficient plot produced by Neuroimaging PheWAS summarizing the phenotypes preselected for multivariate association analysis and their
LASSO regression coefficients at the tuning parameter Lambda that gave the minimum mean cross-validated error (Lambda.min)
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level of p < 5e-8 (Table 1). The Manhattan and Q-Q plots for
the univariate analysis were presented in Fig. 7 and
Supplementary Fig. S3 respectively. The phenotypes with
the most significant p values were the volumes of the bilateral
hippocampus (p < 1e-25) and amygdala (p < 1e-17). Other
phenotypes significantly associated with APOE included the
volume, thickness, GM/WM contrast and/or Gaussian curva-
ture in the medial (perirhinal cortex, EC, parahippocampus
and fusiform), middle and inferior temporal cortices, the thick-
ness, volume and GM/WM contrast in IPC, the thickness in
the left superior frontal cortex (SPC) and precuneus, and the
total subcortical volume. In addition, 113 additional APOE-
brain associations were significant when a Bonferroni correc-
tion (p < 1.55e-5) was applied, including, for example, the
WM volume, mean curvature and surface area in the inferior
and medial temporal regions, the volume and GM/WM con-
trast in the precuneus, and the thickness in the PCC (Fig. 6 and
Supplementary Table S2).

Multivariate ROI-Based Analysis

To perform the multivariate association analysis, the system
first removed the effects of confounding factors of age, sex,
education, scanner and ICV from the values of the 3228
imaging-derived phenotypes using a linear regression. Next,
LASSO was applied to the adjusted phenotypic metrics to
preselect the phenotypes that have the best joint power to
predict the APOE ε4 dosage (the LASSO path was shown in
Supplementary Fig. S4). A 10-fold cross validation was con-
ducted to determine the tuning parameter Lambda that gave
the minimum mean cross-validated error (Lambda.min)
(Supplementary Fig. S5). 13 phenotypes were preselected by
LASSO at Lambda.min (Fig. 8), including the volume of the

left amygdala, the left and right hippocampus in the aseg atlas,
the surface area of the left Brodmann area (BA) 3b in the
BA_exvivo atlas, the surface area of the left Brodmann area
(BA) 3b in the BA_exvivo.thresh atlas, the volume of the left
lateral occipito-temporal gyrus, the Gaussian curvature of the
left inferior temporal gyrus and the thickness of the left supe-
rior frontal sulcus in the aparc.a2009s atlas, the thickness stan-
dard deviation of the left V1 (primary visual area) in the
BA_exvivo.thresh atlas, the GM/WM contrast of the left
EC, the Gaussian curvature and the thickness standard devia-
tion of the left ITC in the aparc.DKTatlas, and the thickness of
the right sulcus intermedius primus of Jensen in the
aparc.a2009s atlas. Then the MultiPhen test was performed
to assess the joint relationship of these preselected phenotypes
with the APOE ε4 dosage. Results of the MultiPhen test was
summarized in Table 2. The 13 imaging phenotypes showed a
predominant joint association with the APOE gene (p = 5.25e-
38). It is not surprising that all these phenotypes did not show
a significant individual association in the joint model
(p > 0.05), as the significance for each individual variable
was assessed considering all the other variables included in
the MultiPhen model as covariates.

Benchmark Testing

The results of runtime evaluation show that Neuroimaging
PheWAS took less than 2 min to complete the univariate
ROI-based analysis for up to 3000 neuroimaging phenotypes
and up to 8000 samples (Supplementary Fig. S6). The more
complicated multivariate ROI-based analysis was completed
within 22 min for up to 3000 phenotypes and up to 8000
samples (Supplementary Fig. S7). The SBM analysis on
327,684 vertices was completed within 4 min for 100 samples

Table 2 Table produced by
Neuroimaging PheWAS
summarizing the results of the
Multivariate analysis for APOE-
brain associations using the
MultiPhen test. Phenotypes were
named as <region>_ <mea-
sure>_ < atlas>. lh: left hemi-
sphere, rh: right hemisphere

Phenotype Coefficients p value

Left.Amygdala_volume_aseg 1.11E-05 9.40E-01

Left.Hippocampus_volume_aseg −2.01E-04 2.43E-01

Right.Hippocampus_volume_aseg −1.73E-04 2.47E-01

lh_BA3b_exvivo_area_BA_exvivo 3.70E-04 4.53E-01

lh_BA3b_exvivo_area_BA_exvivo.thresh 2.62E-04 6.71E-01

lh_G_oc.temp_lat.fusifor_volume_aparc.a2009s −7.22E-05 2.36E-01

lh_G_temporal_inf_gauscurv_aparc.a2009s 3.25E+00 5.56E-01

lh_S_front_sup_thickness_aparc.a2009s −1.14E-01 5.22E-01

lh_V1_exvivo_thicknessstd_BA_exvivo.thresh 1.02E+00 1.66E-01

lh_entorhinal_wg.pct −6.87E-03 3.67E-01

lh_inferiortemporal_gauscurv_aparc.DKTatlas 5.44E+00 4.52E-01

lh_inferiortemporal_thicknessstd_aparc.DKTatlas 5.59E-01 3.12E-01

rh_S_interm_prim.Jensen_thickness_
aparc.a2009s

−2.19E-01 2.25E-01

JointModel NA 5.25E-38
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and 24 min for up to 8000 samples (Supplementary Fig. S8).
In the tests of data harmonization and cleansing,
Neuroimaging PheWAS always correctly identified the artifi-
cially created data flaws (data mismatching and missingness,
and duplicated variables), and accurately harmonized the sam-
ples, discarded the individuals that were not included in all the
input matrices and/or had missing values, and dropped the
duplicated variables. Furthermore, the outputs of the case
study obtained on different computational nodes were consis-
tent, demonstrating the output consistency of the system.

Discussion

We have introduced Neuroimaging PheWAS Version 1.0, a
web-based system for implementing large-scale neuroimaging
based PheWAS. The system offers the unique features of a
user-friendly web GUI, a cloud-based HPC solution for pro-
cessing large MRI data sets and implementing large-scale sta-
tistical gene-brain (or generic) association analyses, and inter-
active management and manipulation of data and results (Fig.
2).

The constant increase of publicly available genotype and
phenotype data (Tryka et al. 2014) creates a demand for tools
that enable researchers to handle the intensive computation in
large-scale data processing and sophisticated association anal-
yses that facilitate the identification of possible genotype-
phenotype relationships at a population-level. For over a de-
cade, GWAS has been the study design and statistical analysis
of choice for genetic discovery (Horwitz et al. 2019; Visscher
et al. 2017). In this study design, millions of common genetic
variants are each tested for an association with a single or a
small number of related outcomes or traits. A number of tool-
boxes and software packages have been developed for differ-
ent facets of GWAS (Gumpinger et al. 2018). PLINK (Purcell
et al. 2007) is, perhaps, the most widely used tool for genetic
data processing and GWAS. It allows the user to perform
various analyses on SNP data, such as univariate GWAS
using two-sample tests and linear regression models, as well
as set-based tests and epistasis screenings. In addition to
PLINK, there are many other toolboxes that implement differ-
ent association tests with linear mixed models, such as GCTA
(Yang et al. 2011), FaST-LMM (Lippert et al. 2011),
EMMAX (Kang et al. 2010), GEMMA (Zhou and Stephens
2012), and with network-based approaches for the joint test of
multiple variants, such as SConES (Azencott et al. 2013),
dmGWAS (Jia et al. 2011) and DAPPLE (Rossin et al.
2011). Apart from these downloadable software packages,
some web-based GWAS tools have been developed, includ-
ing Matapax (Childs et al. 2012), GWAPP (Seren et al. 2012)
and easyGWAS (Grimm et al. 2017). These web applications
enable the user to perform GWAS, analyze and annotate the
results on a web server.

Previous findings of cross-phenotype associations of single
genetic variants observed across candidate gene studies and
GWASs were often attributed to the phenomenon of pleiotro-
py (Solovieff et al. 2013), i.e. a genetic variant or gene affects
more than one distinct phenotype. A recent rapid rise in the
identification of cross-phenotype associations has spurred in-
terest in systematically identifying associations that form the
basis of human pleiotropy (Tyler et al. 2016). PheWAS is the
study approach systematically examining the impact of one or
some specific genetic variants across a broad range of human
phenotypes (Bush et al. 2016; Denny et al. 2016), and is
gaining traction in the scientific community. In the mechanics
of performing association tests, the PheWAS methodology is
similar to the GWAS methodology. However, PheWAS ap-
proaches that investigate a wide range of phenotypes do not
translate well to conventional GWAS software that is focused
on a single phenotype typically. Performing PheWAS using
existing GWAS software packages would requires scripting
many runs of the software. A few efforts have been made to
develop PheWAS toolboxes. For example, Carroll and col-
leagues (Carroll et al. 2014) introduced R PheWAS - an R
implementation of the most common functionality needed to
perform and visualize ICD data-based PheWAS (Denny et al.
2013). A visualization software has also been developed to
assist in presenting and investigating PheWAS results
(Pendergrass et al. 2012). To date, PheWAS methods have
been deployed primarily using electronic health record
(EHR) billing code data (Denny et al. 2016). The recent es-
tablishment of neuroimaging genomic databases of large
healthy and diseased cohorts (Bycroft et al. 2018; Jack Jr.
et al. 2008; Jernigan et al. 2016; Satterthwaite et al. 2014;
Thompson et al. 2010) empowers applications of PheWAS
to neuroimaging data for new insights into the genetic path-
ways that shape the brain and the genetic mechanism in the
underlying biological etiology of diseases (Hashimoto et al.
2015; Medland et al. 2014). However, the existing PheWAS
tools cannot be applied to analyze neuroimaging data directly
because of the fundamental differences in the underlying data
(EHR vs. imaging). New tools for neuroimaging based
PheWAS are required.

To our knowledge, Neuroimaging PheWAS is the first
web-based tool that is designed to address the challenges in
large-scale, brain-wide imaging PheWAS. The essential foun-
dation for establishing such an advanced system is the unique
IT infrastructure at LONI, which is designed and operated to
facilitate modern informatics research (see Supplementary
Methods for details). The resources provide networking, stor-
age and computational capabilities that ensure a stable, secure
and robust environment. These resources have been designed,
built and continuously upgraded over the years by the LONI
systems administration team. Thus, LONI has the appropriate
expertise and operating procedures in place to utilize these
resources to their maximum benefit. Based on such robust,
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extensive IT infrastructure and skilled IT personnel,
Neuroimaging PheWAS provides a cloud-based solution to
perform complex, large-scale imaging genetics analyses on
the LONIHPC grid. It does sowhile at the same time reducing
the technical expertise required to use these resources. No
computer programming skills are required, and it is not nec-
essary to install any software. Second, Neuroimaging
PheWAS offers a variety of statistical methods for
neuroimaging-based association analyses. SBM explores
gene-brain relationships across the entire brain with a high
regional specificity (i.e., point by point), without requiring
the a priori definition of particular ROIs. Especially, SBM
addresses the spatial correlation across the brain using the
RFT method (Worsley et al. 1992; Worsley et al. 1996) to
correct for FWER. ROI-based analysis is more computation-
ally efficient than SBM and has the benefit of a smaller num-
ber of multiple comparisons due to the lower spatial resolu-
tion, although it often neglects focal signals and may be biased
by variation in the ROI definition. The user of Neuroimaging
PheWAS can select the proper analysis based on their research
needs and data types. Next, Neuroimaging PheWAS features
a user-friendly, web-based GUI, which yields an easy way to
manage data, define study protocols and monitor project/job
status freeing the user from tedious command line works on
their local computing environment. Additionally, the present
web solution does not require preinstalled software environ-
ments such as R, Matlab and python in order to enable func-
tionalities on a local host computer, whereas many existing
GWAS/PheWAS tools require their preinstallation. Another
salient feature of Neuroimaging PheWAS is the interactive
result viewer that allows inspecting prominent association loci
on the 3D brain maps for SBM or on the Manhattan and Q-Q
plots for ROI-based analyses. Of note, although the system is
essentially designed for associating genetic variants with
neuroimaging-derived phenotypes, the user can also use it to
implement generic association studies with the employed al-
gorithms’ capability to handle multiple variable types and the
enriched options in defining the analysis protocol on the GUI.
When creating a project for SBM or univariate ROI-based
analysis, besides the genotype, the user can choose any vari-
able (e.g. age, gender, or age × gender and etc.) from the ones
included in the statistical model to test its effects on studied
phenotypes selecting an appropriate statistical test (i.e. linear
regression, t-test, F-test and ANOVA). For the multivariate
analysis, the user can use a non-genetic attribute (e.g. a demo-
graphic, behavioral, environmental or clinical factor) as the
input for ‘genotype’ to assess the joint relationship of multiple
phenotypes with it. Only SBM is a neuroimaging specific
approach, whereas the ROI-based analysis can be applied to
either neuroimaging-derived or non-imaging phenotypes or a
mixture of them.

We demonstrated some of the potential of Neuroimaging
PheWAS in a case study analyzing the associations of APOE

with various brain morphological properties across the brain
in the ADNI cohort. The SBM and univariate ROI-based anal-
ysis consistently associated APOE ε4 dosage with the thick-
ness, volume, area, GM/WM contrast and Gaussian curvature
of multiple limbic/paralimbic regions, well in line with previ-
ous single-phenotype imaging genetics data (Gutierrez-Galve
et al. 2009; Saeed et al. 2018; Stage et al. 2016). The multi-
variate analysis also revealed a predominant joint relationship
of 13 ROI-based phenotypes (mostly in the limbic/paralimbic
system) with the genetic variation of APOE (p < 1e-37).
Conducting such a systematical study without Neuroimaging
PheWAS would be a time-consuming and cumbersome pro-
cess. In addition, Neuroimaging PheWAS has been utilized in
our recent study to examine the impacts of potential modifiers
of normal aging (demographics, cognitive functions, lifestyle
behaviors and specific genetic factors) on age-related brain
morphological differences in ~8000 UK Biobank participants
(Zhao et al. 2019).

There are several important future considerations that could
potentially improve the Neuroimaging PheWAS system. First,
the current system supports image processing for structural
MRI only, and the neuroimaging-specific analysis (SBM) is
limited to brain morphological data. Recently, multimodal
neuroimaging methods have become an indispensable tool
for neuroscientific research and clinical application
(Biessmann et al. 2011). Multimodal data has been increas-
ingly collected by recent large-scale neuroimaging genomic
databases (Bycroft et al. 2018; Casey et al. 2018; Jack Jr. et al.
2008). In the future releases, we will embed other well-
validated software libraries, such as FreeSurfer/FsFast,18

FreeSurfer/TRACULA,19 FreeSurfer/PetSurfer,20 AFNI
(Cox 1996) and/or FSL (Jenkinson et al. 2012), so as to ex-
pand the functionalities of Neuroimaging PheWAS to process
other neuroimaging modalities, e.g. diffusion-weighted imag-
ing (DWI), functional MRI and positron emission tomogra-
phy (PET) scans, and to facilitate analysis of phenotypic data
of brain connectomic and functional properties. Second, quan-
tifying, controlling, and monitoring image quality is an essen-
tial prerequisite for ensuring the validity and reproducibility of
neuroimaging data analyses. We also plan to link
Neuroimaging PheWAS with our web-based brain image
quality control (QC) system21 (Kim et al. 2019), which fea-
tures a workflow for the assessment of various modality and
contrast brain imaging data. This will enable the user to ensure
the quality of their neuroimaging data and the data’s validity
in the subsequent analyses. Third, the current system requires
the user to upload prepared vectors of genetic variants. This
may limit the accessibility of Neuroimaging PheWAS to some

18 https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast
19 https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula
20 https://surfer.nmr.mgh.harvard.edu/fswiki/PetSurfer
21 https://qc.loni.usc.edu
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novice-level users who have no knowledge of genetic data
preprocessing. A future improvement of this study is to inte-
grate PLINK and other genetic data analysis software pack-
ages to enable marker−/sample-QC on genetic data (Anderson
et al. 2010) and genetic marker extraction. Fourth, the multi-
variate analysis is currently not applicable to SBM in the sys-
tem due to the high dimensionality of the vertex-wise data
(327,684 vertices × number of surface-based measures).
There exist a few multivariate methods for surface-based data
of deformation matrices (Shi et al. 2013; Wang et al. 2010;
Worsley et al. 2004) and positional coordinates (Lyttelton
et al. 2009), which essentially still are tests for a single kind
of measure. Developing a computationally efficient multivar-
iate approach to assess the joint effect across the vertices and
various measures is another desirable direction of future work.
Finally, comparing and combining findings across studies of
different cohorts make it possible to identify credible, repro-
ducible findings and increase statistical power in association
mapping through meta-analyses (Thompson et al. 2017).
Thus, we plan to improve the Project Editor and the interactive
result viewer to feature post-PheWAS meta-analysis to com-
pare statistics such as effect sizes across multiple studies and
multimodality brain data.

Conclusions

Neuroimaging based PheWAS aims to scan integrative high-
throughput imaging data of a wide variety of brain structural
and functional properties for exploring relationships between
candidate genes and the brain at a system level. Such research
may assist the development of precision medicine for better
understanding diseases, from genetic determinants to the ge-
netic mechanism in the underlying biological etiology. The
unprecedented scale and complexity of the imaging genomic
data have introduced computational obstacles requiring new
biomedical data science tools. Neuroimaging PheWAS is the
first web-based tool to implement brain-wide imaging genet-
ics analyses of large populations. The system provides the
distinct features of a user-friendly GUI, a cloud-based compu-
tational infrastructure, multiple association analysis methods
as well as interactive result visualizations. It meets the needs
of end-users and enables researchers to focus on scientific
questions both at the biological as well as the computational
ends, without them having to possess extensive computational
or storage infrastructure and programming expertise.

Information Sharing Statement

The Neuroimaging PheWAS system is freely available online
at http://phewas.loni.usc.edu/phewas/.
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